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ABSTRACT

In this study, we measured the temporal correlations in the

electromagnetic field radiated by a Laser in the threshold region of

oscillation, from 1/10 of threshold intensity to ten times .hreshold

intensity. The experimental results are compared with theoretical pre-

dictions based on solutions of a Fokker-Pa.anck equation.

We stabilized the intensity of a He-Ne cw gas laser by means of

a long-time-c ,,-,nstant servo system which controlled the cavity length.

Using a fast pho"_nmultiplier as detector, we recorded the photo-

electron count distribution within a short counting time (3 microseconds)

while the photomultiplier was exposed to the laser light. From the photo-

electron count distribution measurement, we calculated second, third, and

fourth normalized cumulants of the intensity probability density function

of the light field. The normalized cumulant is a measure of "pure" corre-

lations among photons because the contributions from lower order correla-

tions are removed.

The statistics of the photoelectron count distribution shows that

the intensity fluctuations at about 1/10 threshold are nearly those of a

Gaussian field and continuously approach those of a constant amplitude field

as the intensity is raised to about 10 times threshold.

The normalized 2nd, 3rd, and 4th cumulants of the intensity pro-

bability density function of the laser light were also measured at 17% and

1	
42% of threshold intensity as counting time was increased from 3 micro--

seconds to 1000 microseconds. The results agree with predictions computed
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computed under the assumption that the dependence of the correlation

functions on the time variables is the same as for Gaussian light.
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1
CORRELATIONS IN LIGHT FROM A LASER AT THRESHOLD

I, INTRODUCTION

Since the invention of the laser, intensity fluctuation phenomena

in laser radiation have been of great interest. 	 It is well known that

if the photocount technique is employed in the measurement, the statistics

of photoelectron counting reveals information about the statistics of the

light intensity fluctuations.	 The advantage of the phot:ocount technique

is the relative simplicity of the measurement of the higher order correlations.

In fact, remarkable work has been done with this particular technique in

the study of fluctuation phenomena in lasers
1-14

The first measurements 
1-12 

showed that well above the threshold of

oscillation, a single-mode cw laser produces light of essentially constant

amplitude.	 At the same time, it was demonstrated that such a laser opera-

ting far below the threshold generates an electromagnetic field with a

nearly Gaussian amplitude distribution. 	 Theories for the single-mode ca

at about this time	 the transition	 a Gaussianlaser developed	 described	 from

light source to an amplitude-stabilized source 
15-24.	

These theoretical papers

pointed out that the region near threshold is tiost crucial for a comparison

between theoretical predictions and experimental results, but practical

difficulties had prevented exploration of this important region in the early

experiments.	 More recently some pzaliminary experimental results have been

I	 esented, by others as well as ourselves 
13014,25,26 

which confirm theoretical
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predictions based on the solutions of a Fokker-Planck equation for a laser

operating near threshold.

This paper presents the detailed results of our study of a single-

mode He-No laser operating over an intensity range from 1/10 to ten times

that at threshold. The results of our photoelectron count measurements are

interpreted in terms of the statistics of the light from the laser. We

adopt the semi-classical approach and relate the statistics of the photo-

electron count distribution to those of the intensity probability density

function (IPDF) of the light, and the measure of correlations among photons

is represented by the normalized cumul.an.ts of the IPDF of the light.

In our experiment, we obtained the normalized cumulants of the

laser light IPDF up to fourth order. The results are compared with theore-

ticalredictions based	 Fokker-Planck	 i	 The closep	 a	 on solutions of a Fokke lanck squat on. h

agreement is remarkable.

I
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II, THEORY OF INTENSITY FLUCTUATIONS

If a phototube io repeatedly exposed to a stationary light

field for an interval T, the photoelectron count probability density

function can be related to the time-integrated-intensity probability

density function of the light field at the photocathode by 27

go	 n

10	 n1
0

Here p(n) is the probability of counting precisely n photoelectrons while

i)(U) is the probability density function for the time integrated intensity

U and a is the quantum efficiency of the photocathode. If we think of the

light field in classical terms, then

t+T
U	 f	 I (t' )dt' ,	 (2)

'	 t

where I(t) is the instantaneous light intensity (integrated over the photo-

cathode volume) while Q?(U) is simply the probability of finding the time

integrated intensity to be U. In quantum mechanical. terms, Eq. (1)

still holds except that F(U) is now defined in terms of its moments as

t+T	
3

f dt f d r 1 G (n) (rltl,r2t2,...r,ntn;rntn,...r2t2,r1t1)
a t
	 i

00

	

s f Unp(U)dU <Un>	 0
0

where the G (n) are the normally ordered light field correlation functions

discussed by Gl.auber2$.

6
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In general, it is impossible to evaluate Eq. (1) given only the

probability density function for the instantaneouw Light intensity. An

is clear from its representation in Eq. (3), 0 7(U) is a complicated function

of the counting interval which depends on the detailed dynamics of the

light field fluctuations over the time T. To simplify the discussion and

the analysis of the experiment, we restrict ourselves here to the condition

that the counting time T is much shorter than the characteristic time for

light intensity fluctuations. We may then replace the time integrated

intensity in Eq. (2) by T times the instantaneous intensity or, equivalently,

in Eq. (3), evaluate G (n) with all times equal and replace the n time into-

grals by a factor of Tn . We will raturn below to the more general case of

arbitrary T.

Then Eq. (1) can be written as

in
p(n)	 n! e

RIP(I)dI	 (4)

in intensity units where vT - 1 and I, the instantaneous intensity, is a

stationary random variable. The function P(I) is the (instantaneous) inten-

sity probability density function, which we call the IPDF.

The intensity probability density function for the light field

inside a single mode laser (and thus for the Light field at a photocathode

illuminated by such a Laser) has been evaluated as a steady state solution

of a Fokker-Planck equation 12017022 to be
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gives the mean intensity in terms of the mean intensity at threshold, -Io•,

and a pumping parameter w. When w-n (w D) the laser is operating above

(below) what is commonly called its "threshold" level. It In this theore-

tical expression we will be comparing with experiment in the threshold

region.

The expected photoelectron count distribution p(n) produced by Laser

light can be obtained by inserting Eq. (5) into Eq. (4)• However, the

expression so obtained is not simple12 . In order to compare experimental

results with theoretical predictions, a more convenient meeting point is

provided by the IPDF itself and its statistical constants, such as moments.

A real experiment with finite uncertainties determines well only a finite

number of appropriately chosen statistical constants of the IPDF, and we

must try to choose independent statistical constants to maximize the infor-

mation obtained. We choose to limit our description to constants which are

normalized to be independent of the absolute intensity.

Smith and Armstrong have found useful the reduced second moment

of intensity H2,

8
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z

which is this normalized varianca of the IPDF. The appropriate generali-

zation of the variance to a higher moment seems to us to he the norma-

lised cumul,ant of the IPDF, which subtracts from the i -th mcment effects

due to correlations of order lower than i (cf. Appendix A).

The most concise definition of the i-th order cumulant K  of the

IPDF is 29

i

Ki	
d 

i lia e Is . 1	 (7)
do	 IsWQ

It is shown in Appendix A that in spite of this apparently unphysical formal

definition, the closely related normalized cumulants K
i 1
/K 
i 

Qi have e^

significant physical interpretation. This i-th order normalized cumulont

is a measure of pure i-photon bunching, excluding the probability of the

presence of i photons because of acctdentsa. coincidences, or correlations

of lower order.

The normalized cumulants are easily evaluated for two particular

forms of the IPDF of prime interest. The IPDF of fully polarized light

of Gaussian amplitude distribution is 27

PM a <I> `l exp (-I/ <I >)
	

(8)

where ;I> is the mean intensity. Inserting Eq. (8) into Eq. (7), we

9
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obtain K  . (i.l)!{T=i, or Q i = (i-I)! The values are appropriate for

chaotic or thermal light sources.

For a constant amplitude field such as at laser far above threshold,

the IPDF is

P (I) "R 6(1 - <I>) •	 (9)

Inserting Eq. (9) into Eq. (7), we obtain Kl = C I , , and Kl = 0 or Qi = 0

for all i ; 2, which implies than the photons in a constant amplitude field

propagate independently and do not bunch.

Similarly, we obtain the cumulants of the theoretical laser IPDF by

s	 inserting Eq. (5) into Eq. (7):

f

Ki = ( 2 < >) i r
1 (w),

or

Qi = r i (w) / [rl (w) l i

where 
30

r (w) = 2w + 
.2 exp ( -w 2 ) , and r (w) d r	 (w)4	 .

1	 1+erf(w)	 i	 dw i-1

Or explicitly, we have

2
r 2 (w) = 2 + 2wr1 (w) - [ rl (w) i

r3 (w) = 2r1 (w) + 2r 2 (w) [w - r  (w) ]

r4 (w) = 2r 2 (w) [ 2 - r 2 (w) ] + 2r3 (w) [w - r  (w)]

etc....

10
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V

I
Experimental values for the cumulants of the IPDF are easily

extracted from the photocounting data. Thus, from Eq. (4) the factorial

moments of p (n)

n!
m[i] 

_n 0	
(n-i)! P(n)

are equal to the corres ponding moments of P(I)

M Mi	 .Ii, r S I i P(I)dI	 (10)
0

Factorial cumulants k (i] of p(n) are defined in close analogy to

Eq. (7) (cf. Appendix B) and Eq. (10) implies that kr il = K  as well.

Then our data is analyzed by evaluating the k [i] from the measured distri-

bution and comparing them to theoretically predicted values of the K 

III. EXPERIMENTAL SETUP

A block diagram of the experimental arrangement is shown in Fig. 1.

The laser used in the e)periment was a small single mode He-Ne cw gas laser

oscillating at 63288. The laser is an early model from the stable-laser

development program 
31 

undertaken by U. Hochuli of the Dept. of Electrical

Engineering, University of Maryland.

The 1250 MHz axial mode separation (12 cm cavity) and low gain of

the laser, even at the peak of the Doppler-broadened gain curve, assured

operation in only one axial mode. The nearly hemispherical configuration of

°'	 : xa
. ^..	
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I
12

the cavity and the small capillary gas tube (about 1.5 mm inner diameter)

suppressed higher order transverse modus because of the high diffraction

loss. The laser ,gas tube had a discharge length of 5 cm with a Brewster angle 	 i

window attached to each end of the tube. Each cavity mirror had a trans-

mission of 0.6% at 6328 X. The laser was DC excited with a typical pumping

current of 2.5 mA. The pumping current was regulated electronically within

a few parts in 145.

A cylindrical ceramic piezoelectric transducer was built into one

of the mirror holders to control the cavity length. The piezoelectric trans-

ducer formedaxrt of an intensity feedbac. r loo 10 which could be used to setp	 Y	 p

the laser intensity and hold Lt closely to the chosen value, thu g stabi-

lizing the pumping parameter w. The reason for the choice of stabilization

by tuning is that we believe that main cause of gain drift in a laser is

uncontrolled cavity length changes, particularly those resulting from thermal

!expansion in the metal of the laser structure. Temperature compen pated Invar

cavity spacers allowed operation of the laser without thermostatic control 	
+

in a heavy aluminum box which served as a heat reservoir. The temperature

in the box reached a sufficiently stable equilibrium in about eight hours.

Furthermore, the output from one end of the laser was monitored by a photo-
.,

multiplier as shown in Fig. 1. An interference filter peaked at 6328 X with

20 X bandwidth was used at the window of the monitor photomultiplier so

that only the lasing mode was sensed. The photocurrent was compared with

a reference. If the laser was operating at the desired intensity level, the

photocurrent was completely cancelled by the reference. A deviation caused



by any small drift in the laser output intensity was amplified and applied

in series with the main tuning batteries to the transducer to correct,

through the cavity tuning, the intensity drift. The laser was stabilized

to less than .5% long-term drift in intensity. The time constant of the

amplifier in the feedback circuit was 16 seconds, which was sufficiently

long to leave the short-time fluctuations of the laser light unaffected.

The laser was isolated from building vibration by seating the

heavy aluminum box on a soft auto inner tube. The combination of the large

mass xjf the box and the small spring constant of the soft inner tube yielded

a very low high-frequency transmission cutoff, about two cycles per second.

The building vibration, which consisted mainly of higher frequencies, was

thus decoupled from the laser.

The laser output from the other end was fed to a photomultiplier

which was connected to the counting system. The counting system counted

repeatedly the number of single photoelectron pulses occurring in a counting

time interval and recorded this number in the memory. After having counted

a sufficiently large number of times, we obtained the photoelectron 	 11

distribution, p(n).

The counting system consisted of an amplifier, a discriminator, a

gate generator, a scaler, a control circuit, and a multi-channel (pulse

height analyzer) memo 	 i	 The single photoelectron pulsesg	 y	 )	 ry, as shown in Fig. 1.	 h	 ngl p o	 n p is s

from the counting photomultiplier were amplified and fed to the discriminator,

which produced a standard pulse for each photoelectron pulse. The single

photoelectron pulses from the counting photomultiplier were amplified and

13
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fed to the discriminator, which produced a standard pulse for each photo-

electron pulse. The discriminator t •̂as gated by a gate generator. The

gate generator was set to have a gate width (which was the counting time of

the experiment) of 3 microseconds. The choice of the counting time was made

with the restrictions that it be short compared with the relaxation time

of the light field intensity but long compared with the dead time of the

system. The dead time of the counting system was 39 nanoseconds.

During an open gate period, the standard discriminator output

pulses t~iggered by the photoelectron pulses were counted and the number stored

in a scaler with a storage capacity of 128 counts. Before the next gating

period was initiated, the information in the scaler was transferred to the

memory of a multichannel pulse height analyzer as follows.

At the conclusion of the gating period, a local oscillator in the

control circuit was activated. The standard pulse output from the oscillator

was used to scale the address scaler of the multichannel memory while it was

simultaneously used to fill the partially filled scaler. The oscillator

stopped as soon as the scaler was filled to its capacity of 128 counts.

Then the control circuit added "one" in the particular address of the multi-

chaz.nel memory to which the address scaler had advanced, and one sampling

period was concluded. A signal from the control circuit would initiate the

next sampling period.

The sampling cycle was repeated at a rate of about 3 KHz until

about 103 samples were collected. Then the data in the analyzer memory was

read out by a teletype page printer, which punched a paper tape at the same

time. The paper tape was then ready for analysis by a digital computer.

14



IV. SYSTRMATIC CORRECTIONS

In Sec. II, we made the theoretical analysis under the assumptions

that the counter was free of dead time effects and the counting time was

extremely short (ideally zero). In the actual experiment, however, neither

the dead time nor the counting time is zero; therefore, systematic corrections

were accordingly applied to the data. Furthermore, a small amount of light

from the gas discharge was also present along with the laser light, requiring

an extra correction.

1.	 Dead Time Correction

The counting system has a dead time after recording a photoelectron

in which it is insensitive to another event. If a counter has a dead time

only for a recorded event but not for one which occurs during the insensitive

period following a previous event, then it is called "nonparalyzabl.e". Our

counter is such and it has been shown 
32 

that for such a counter with a dead

time -r, the Poisson distribution with mean of x appropriate to constant

intensity light must be replaced by the following exact expression

P D (n) = Y (n-1, 6
n-1

)/ (n-1) ! - y (n, 6n )/n!	 (11)

where

Y (n, R ) _ 1 an vne-
v
 dv

n
0

is the incomplete gamma function and ^n = x(l - n8) with S defined as the

r'

15
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ratio of the dead time t to the counting time T, 6	 z/T. Tn order to

obtain convenient expressions relating measurements affected by dead time

and those free of dead time, Eq. (11) is expanded in powern of 6 up to the

third, yielding 33

r•

i
where

n -x
pD(n)	

x	
(1 + A1 6 + A2 6 2 /2 + A3 6 3/6 + ..... )	 (12)

AI - (x + 1)n - n2,

A2 - -C(x + l)n - (x2 + 2x + 3)n2 + (2x + 3)n3 - n4],

A3 - (x2 + 2x + 2)n - Ox  + 8x + 9)n2

+ (x3 + 3x2 + 12x + 16)n3 -(3x2 + 9x + 14)n4 + (3x+6)n5-n6.

^L
	

If we replace the Poisson distribution in the integral of Fq. (4)

by Eq. (12), we obtain the relationship between the factorial moment of

p(n) with dead time effects, f [il , and the moment of the IPDF, Mi , as

fill - M
I - M2 (d - 2 2 ) + M3 (6 2 - 63 ) - M4 63	(13a)

f C21 - M2 (1-26 +6 2 ) - M3 (26 - 66 2 + 4 -32--6 3 )	 (13b)

+ M4 (36 2 - 126 3 ) - M5(4d3)

f[31 - M3 (1-66 + 126 2 - 86 3) - M4 (36 - 2226 2 + 576 3 ) (13c)

+ M5 (66 2 - 546 3 ) - M6(1063) 0

16



f [41 0 M4 ( 1-126 + 546
2
 - 1086 3 ) - M5 (46 - 566 2 + 2966 3 ) (13d)

+ M6 (106 2 - 1606 3 ) - M 7 (206 3 ) ,

f [5) " M5 (1-206 + 1.606 2 -6406 3 ) - M6 (56 - 112t 2 + 10163 
3 

(13e)

+ M7 (156 2 - 3756 3 ) - M8(3563)

f [61 = M6 (1-306 + 3156 2 - 25006 3 ) - M7 (66 - 1985 2 + 27306 3 ) (13f)

+ M8 (216 2 - 7566 3 ) - M9(5663),

fM (1 - 426 + 7566 2 - 75606 3 ) - M (76-318'6 2 + 62236 3 ) (13g)[7]	 7	 8	 2

+ M9 (286 2 - 13726 3 ) - M10 (8463)

and etc..

The practical difficulty attending the use of the corrections is

that the corrections needed to obtain Mk from measured f [k) involve higher

order moments which themselves require corrections. A consistent method of

approximation is obtained by iteration. The uncorrected f [k) is taken as

	

the zerrth order approximation to M and designated Mk(0). 	For i-th order	 1
Mk	

"k

corrections, we retain the terms in 6J only for all < i; and the coeffi-

cients of 61 are given by the (i-j)th order approximation to M k designated

by Mk (i-3) with appropriate values of k. For first order corrections, we

obtain

17
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M6 (1) - f [6 1 + 6[30f [6] + 6M 7 (0)1 0

M5 (1) - f [5] + d[20f 151 + 5M6(0)],

M4 (1.) - f [41 + d[12f (41 + 4M5 (0) ,

M 3 (1) - f [3] + d[6f [3) + 3M4 (0)] ,

M2 (1) - f [2] + 6[2f [21 + 2M 3(0)1,

M1 (1) - f [1] + 6m2(0)

For second order corrections, we obtain

M5 (2) - f [5] + 6[20f
151

 + 5M6 (1)1 + 6 2 [240f [5] - 12 12--m (0) - 15M
7 

(0)]

M4 (2) - f [4] + 6[12f [41 + 4M5 (1)] + 6 2 [90f (4) - 8M5 (0) -10M6(0)]

M3 (2) - f [3] + 6[6f [31 + 3M4 (1)] + 6 2 [24f [3] 	- 4-'-M
4
 (0) -6M5(0)]

M2 (2) - f [2] + 6[2f [2] + 2M3 (1)] + 6 2 13f [21 - 2M3 (0) - 3M4(0)]

m
1 
(2)- f [1] + 6M 2 (1) - 6 2 (4- (0) + M3(0)]

For third order correction, we obtain

M4 (3) - f [4] + 6[1.2f [41 + 4M5 (2)] + 6 2 [90f (41 - 8M5 (1) - lOM6(l)]

+ 6 3 [540f [4 1 - 16M5 (0) + 40M6 (0) + 20M
7

(0) 1 	 (14a)

M3 (3)- f f3] + 6[6f [3] + 3M4 (2)] + 6 2 [24f [3] -4 4 (1) - 6M5(1)]

+ 6 3 r80f (31 - 6M4 (0) + 18M5 (0) + lOM6 (0)]	 (14b)

18
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M2 (3) a f [2] + n[2f [21 + 2M 3 (2)] + 6 2 [3f [21 - 2M 3 (1) .. 3M 
4
M]

+ 6 3 (4f
2]

 - 11 (0) + 6M (0) + 4M^(0) ] 	 (14c)

1.
M1(3) n f [1] + AM2 (2) - 62 [ 212 (1) + M3 (1)] + 6 [M.1 (0) + M

4 
(0 \̀1	 (14d)

The accuracy of the third-order expansion in Eq. ( 13) improves

with decreasing d. The omitted fourth-order terms in f [kj includes M16
4

where k :.j tk+4. The convergence of the series is worst for light fields

with large fluctuations. Tn general, Mk M Ck (M1 ) k ; that is, the k-th moment

is proportional to the k-th power of the mean intensity, M 1 , times a constant

which depends upon the statistical nature of the field fluctuations. For

our worst case, the Gaussian field of a laser operating well below threshold,

Vk!(Ml ) k . Thus, the neglected fourth order terms include (k+4)(k+3)(k+2)

(k+l)(k!)(Ml ) k+4 64X(constant) whereas the dominant term contains (k1)(M1)k0

and we must require that k6M1« 1. Similar considerations apply to the

inversion of Eq. (13) to obtain Eq. (14).

The accuracy of the dead time correction was tested as follows.

Assuming a dead-time-affected Bose-Einstein photocount distribution 320

which is appropriate to Gaussian light, the moments with dead time effect

were calculated. The dead time correction was applied to these moments and

then compared with the values of the moments in the absence of the dead

time effect. We found that, for a mean of 2 counts, the errors in the

corrected first and second moment were negligibly small,, and that in the

third and fourth moments, the errors were .5% and 2% respectively. Therefore,
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in our experiment with b . 0.013 9 (s : 34 nsec, T . 3 vsrc), we kept M1
between 1 and 2, by using a few calibrated inters to attenuate the lager

light when necessary, to assure the validity of the dead time correction.

2.	 Counting Time Correction

The necessary condirion for our measurements to reflect ache

statistics of the instantaneous light intensity is that the counting time

be much smaller :.nan the coherence time of the intensity fluctuatior;

C ;^	 I	 ha	 sT 1, where	 is the half width of the intensity fluctuation s pectrum. But

the precise degree of smallness needed for a given accuracy is not obvious.

Now it is known for a Gaussian light source that the normalized

i-th cumulant for a counting interval T is
27

	

T / 	 /Ti	 .4 41 0Qi (T) a Qi (0)	 . E Y (t l -•t 2 )Y(t 2-t 3 ).. ..Y(t C t 1 )dt l .... ,rlt 1	(15)

for 1 ;2, where Y(t i—t^) is the normalized field amplitude correlation
function. Assuming the field has a Lorentxian amplitude spectrum, the

absolute value of the two-time correlation function decreases exponentially

with time separation

	

t -t	 s	 -r f tY( i 	 ex)p( I i-t 1/ 2 )

where r is the half width at half maximum of tb a intensity power spectrum.

Upon substitution of this particular form of the correlation function into

t
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Eq. °'.5) we obtain 34,35

Q2 (T)/Q2 (0) = 2y-1 + 2(e"Y - 1)Y-2 ,	 (16a)

Q3(T)/Q3'.0) w 6(e-y + 1)y
-2 + 12(e-Y — 1)y-3 	(16b)

Q4(T)/Q 4 (0) • $e'"Yy-2 + 217 
(?e-y + 1) Y-3	

(16c)

-2y	 -y -	 -4+ 2(e	 + 2g e	 2^)y

where y _ rT.

A close examination of Eq. (16) shows that the normalized

cumulants deviate From their zero-counting-time limits by 3%, 5%, and 7%0

respectively, for the second, third, and forth order, even when y is as

small as 0.1.

Areliminar measurement of the spectrum of the laser lightp	 Y	 p	 8

showed that the half width r was about 6 x 104 sec
-1
 when the laser was

operating at about 1/6 of threshold intensity. Then rT was about .2 at

that point with our counting time of 3 microseconds. In that region, the

laser behaves roughly as a Gaussian light source, the computation above
l

is appropriate, and we find that the deviations of the normalized cumulants

`
from their zero-counting-time limits are not negligible.

1
In order to find appropriate counting time corrections to the

statistics of the laser light, we determined the time dependence of the

normalized second, third and fourth cumulants for counting times from

21
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3 to 1000 microseconds for a laser operating slightly below threshold

where Q3 and Q4 are sensibly different from zero. The results Caere then

compared with a time dependence computed under the assum p tions that the

dependence of the correlation functions on their time variables is that

of Gaussian light and the spectrum of the correlation functions is

Lorentzian 25 . The results so computed have the same farm as Eq. (16)36.

The validity of Eq. (16a) depends only on the Lorentzian assumption, but

the relevance of Eqs. (16b) and (16c) depends upon the dynamical,

co.^ relations in the .Laser light.

Our experimental results, which are presented in the next

section, show a good agreement with Eq. (16). Therefore, the counting

time correction can be applied to the data by using Eq. (16) for the

laser operating in the region below threshold. At higher intensities,

where the simple assumptions may no longer be applicable, the normalized

cumulants approach zero and the counting time correction is comparable

to or even less than the systematic error. Therefore, the counting time

correction can be ignored.

All bandwidths of the spectra of the laser light were not

measured individually for purposes of the counting time corrections.

Instead we measured the width of the spectrum at 17% of threshold

intensity where r - 81.4 x 10 3 sec-1 and then extrapolated this to other

intensities by fitting the data to the quasilinear ariroximation 
21. 

We

obtained for T = 3 microseconds

r T = 0.041 (0.636 	 + <I	 )
	

(17)
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This approximation is quite accurate, with errors less than

3%, for a laser operating below threshold where the counting time correction

is the most significant. The error rises to the maximum of 30% at about

three times the threshold where the counting time corrections are already

insignificant. Theiefore, we believe that Eq. (17) is adequate for

our purpose.

3.	 Background Correction

Although an interference filter as well as a geometrical stop

was used in front of the counting photomultiplier to reduce the amount

of discharge light reaching the photocathode, there was still a small yet

not negligible amount of discharge light present. The background

electron count was then due mainly to the discharge light, whose intensity

was about 5% of *he mean intensity of the laser light at threshold and

a small amount of dark current which constituted about 1 to 2% of the

total counts. In order to obtain the statistics of Laser light alone,

the background should be removed. Thus, the statistics of the background

were first measured and studied.

We measured the photoelectron count distribution due to the

total background and found that it followed a Poisson distribution for

a counting time of 3 microseconds. A spectral measurement of the

background showed a flat spectrum, indicating the broadband nature of

the background component.

The total IPDF sensed by the photomultiplier is the convolution

of the individual IPDF of the laser light with the equivalent IPDF of

23
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the independent broadband background. It can be shown that any cumulant

of the total IPDF is the simple sum of the corresponding cumulant of the

laser light and that of the backgrourd37 . Therefore, in the experiment,

the cumulants of the background were all measuredg	 r and then subtracted

from the total cumulants to produce the cumulants of the laser light IPDF.

24



V. RESULTS AND DISCUSSION

1.	 Statistics of baser Light at Threshold

The normalized second, third and fourth cumulants of the IPDF

of light produced by the laser operating in the region from 1/10 to ten

times mean threshold intensity were measured. The counting time was

3 microseconds. All systematic corrections were applied to the data as

described above.

The results are plotted as functions of mean intensity in

units of mean threshold intensity in Fig. 2. The value of mean threshold

intensity < Io> for the laser was obtained from the value of Q 2 in order

to place the curves on the abscissa. The laser is at the threshold when

Q2 - 0.5708 as described by the theory. The experimental data are shown

as dots while the theoretical predictions are the smooth curves. Standard

deviations are shown as bars when they are larger than the dot size.

The agreement between the theory and the experiment is very

good. As shown in the figures, the laser can be described as a narrow

band Gaussian source whe,, it is operating well below threshold (<I>/<Io>=0.1)

as indicated by values of Q  being nearly (i-1)1. The gradual transition

of a laser field from a field of Gaussian amplitude distribution to a

coherent field when it is brought from well below threshold to well above

threshold is properly described by these normalized cumulants which are the

measures of bunching effects amoung photons. A gradual decrease in the

bunching effects is exhibited by the laser when its mean output power is

11	
25
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9

increased from 1,10 to 10 times mean threshold intensity. Furthermore, the

higher order bunching effects diminish more rapidly than the lower ones.

As shown in the figures, Q4 is almost zero as soon as the laser reaches

the threshold, Q3 does not vanish until the laser reaches about three times

threshold, while Q 2 stays non-vanishing until more than ten times threshold.

The dramatic transition of a laser field from Gaussian to coherent state

is thus demonstrated by our result., whirl • also offer striking confirmation

of the theoretical analyses.

2.	 Counting Time Dependence of the Laser Light Statistics

f

To facilitate corrections for finite counting times, t

normalized second, third, and fourth cumulants of the 1PDF of light
x

from the laser operating slightly below threshold were measured as functions

of the counting time T. The counting time was varied from 3 to 1000 micro-

seconds. Dead time and background corrections were applied to the data

as described in section IV. Then a least squares fit was made of the

data Q2 (T) to (the logarithm of) Eq . (16a) using Q 2 (0) and 1' as para-

meters. The same value of P was used for Q 3 (T) and Q4 (T),
 adjusting

Q3 (0) and Q4 (0) for the best fit. Data for Q  (T)/Q 
1 
(0) , for i - 2, 3, and

4, along with Eq. (16) (shown as smooth curves) are shown in Fig. 3.

Data were obtained at two intensity levels of laser operation.

Comparing the best fit values of Q 2 (0) with theory, we found that these

intensity levels were at 17% and 42% of mean threshold intensity (indicated

by open a, . solid circles, respectively, in the figure). The ratio of the

26
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measured linewidths at these two intensities is r(.17)/r(.42) = 2 ► 20, in

good agreement with the theoretical prediction of 2.19. The values of

Q3 (0) and Q4 (0) are also in good agreement (a few percent) with theoretical

predictions for these intensities.

The good fit of our experimental results, shown in Fig. 3,

seems to imply that in the region under study where the static intensity

correlations are already quite different from their Gaussian limits, the

dynamic correlations can still be described by the simple one-decay-time

approximation appropriate to Gaussian light. At higher intensities,

closer to and above the threshold, we expect deviations from this simple

result.

Furthermore, this demonstrates that measurements of this kind

are quite suitable for measuring spectral linewidths on the order of a

megahertz or less. This technique has also recently been used, by

Jakeman et al, to measure the spectral half-width of scattered light from

articles undergoing Browian motion 
38 

and is applicable to a varietyP	 g g	 PP	 Y

of systems. l"
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VI CONCLUSION

The measurements presented here have shown that the intensity

fluctuations of a laser operating in the threshold region are well

described by the theoretical treatments of references 17 - 24. A recent

measurement by Arecchi et al 
13 

of the reduced second order factorial

moment, which is the normalized second cumulant of the IADF, also agrees

with these treatments.

As the result of our study, we have not only learned about the

correlations in the field radiated by a laser but also established a

general approach to measuring the correlations in an electromagnetic

field of an arbitrary kind. Further applications of these techniques are

under study.
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APPENDIX A: MOMENTS, CUMULANTS, AND PHOTON BUNCHTNG

For either the zero counting time or zero intensity limit,

Eq. (4) is exact. In an actual exper ; ment, measurements with nonzero

counting time car, be extrapolated to the zero counting time limit. In

this limit the i-th moment o£ the intensi ty -It, is a measure of ther	 y	 ^

probability of observing i photons bunching or arriving simultaneously.

This is obvious when we consider •I i rin the quantum mechanical sense as

< E(+)i E
(-)i = where H (+) and E (-) are the creation and annihilation

operators. If the photons are uncorrelated then the probability of

observing i-photon bunching 
<Ii 

is equal to the i-th power of probability

of observing one photon. This can be expressed as <Ii^ W <I ?i , indicating

bunching of an accidental kind. A field with only accidental bunching

is represented quantum mechanically by a coherent state 28 0 	 or

classically by a constant intensity. In order to obtain a measure of cor-

related bunching in excess of the accidental, kind, we have to remove

all the contributions to the higher order bunching resulting from accidental

bunching of lower order. For two-fold correlation we can express the

overall bunching by the sum of true bunching and accidental bunching as

<I 2> = K2 + C 2 where KlE <I> and C 2 is the two-fold true bunching. For

three-fold correlation, we have not only accidental bunching of three

single photons but also the accidental bunching of one correlated pair

and a single besides the three-fold true bunching C 3 . Since the bunching

t^ a

i
g	 ^^, 	 G` s	 •^ x

	
z	 ^t	 _



of a pair and a single can occur in three different ways, the overall

three-Fold bunching can be expressed by

<I 3 >	 K3 + 3K1C 2 + C3

Applying the same procedure to the four-fold bunching and we obtain

C. 14 > 	 K4 + 4KlC 3 + 6K2C2 	+ 3C2 +C4

Similarly, any given r-fold bunching <1r> can be expressed in terms of

all possible combinations of lower order bunching with a residual term

Cr r. Reviewing the general formula for moments M expanded in terms of

cumul,ant s (cf, , ref. 29 p. 68) ,

Mr	 F	
i

i.i	 j .l

where the second summation extends over all non-negative integral value

^ i	 of 7t  and pi such that

i
p j ' j	 r }

j -l.
we find that the expansion of --I i> into true correlations is the same as

the expansion of Mr into cumul,ants . Therefore, we can identify the

measures of true bunching, C i , as the currul.ants K it and we conclude that

the cumulants measure the true bunching of photons.
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The values of the cumulant depend on the mean of the dis-

tirbution. For a population of the same statistical nature, the higher

the mean the larger will the cumulants be. In order to obtain a set of

descriptive constants to characterise the statistical nature of the

population, we introduce normalised cumulants Qi , defined as

tai /Ki	 Notice that the normalized second cumulant Q 2 is the same as

the reduced second moment H2 introduced by Smith and Armstrong.
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APPENDIX B: INTF.RRFI.ATIONSHIP:S AMOUNG STATISTICAL. CONSTANTS

The factorial moments and factorial cumulanttr are defined only

for a discrete random variable whereas the moments and the cumulants

are defined for either a discrete or a continuous random variable. These

statistical constants are more conveniently defined by the generating

functions. The, factorial moment generating function, f (s) , of P(n)

is defined an 29

f(s) =	 (1+s)n p(n)	 m^i s	 ,	 (18)

n* O	 JNO	 if

tnd the factorial cumulant generating function, c (s) , of p (n) is

defined as 29

c(s) = In f ( s) _	 ktil  8 	 (19)
iftl	 if

The moment generating function, M(s), of P(I) is defined as 29

co

	

M(s) 
	

Is> = I Mi si	
s

i•0	 :F1(20)

and the cumul .ant generating function, K(s) , of I (I) is defined as 29

K(s) Z In M ( s) _	 K  si
iml	 it
	

(21)
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It has been shown that m [ii = Mi in See-TT, than it follows, comparing

Eq. (18) and Eq. 1 90), that

f(s) = M(S).

Thus, comparing Eq . (19) and rl.. (21), we Have

k [il	 Ki	.

The relationship between K [il and m [ , 3 can be obtained by

expanding the Logarithm of Eq. (18) in Eq. (19) and comparing; the coeffi-

cients of s i . Explicitly we have29

k[1]
= mul

2
k[2] = m[2, 

_ 
m [1]

k [3] = m[31	 3m [2]m [ll + 2m 
3[1]

k[4] = m[4] - 
4m

[3, m[1] - 3m2[21 + 12m[21m2(11 - 
6m4[11.

etc..
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Figure Captions

Fig. 1	 Block diagram of the experimental setup.

Fig. 2	 Normalized (a) second, (b) third, and (c) fourth cumulant of

laser light ZPDF plotted as functions of the normalized

intensity <x>/ 4 xo > in the threshold region. The curves are

the theoretical predictions whereas the dots are the experi-

mental data. The indicated error bars (shown when larger

than dot size) are standard deviations.

Fig. 3 Normalized (a) second, (b) third, and (c) fourth cumulant of

the time integrated 1PDF of laser light just b6low threshold

plotted as functions of the counting time. The open circles

and the solid circles are the experimental values of laser

light operating at 17% and 42%, respectively, of the threshold

intensity. The curves are the plots of equation (16). Standard

deviations are shown as bars when they are larger than the

dot size.
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